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Abstract - The temperature distribution and the rate of removal of heat by a coolant are predicted for the 
process of solidification of a liquid about a cold, isothermal pipe. The heat balance integral method 
incorporating spatial sub-division is used. It is found that acceptable results can be obtained by using only a 
small number of sub-divisions together with a piece-wise, linear profile. Furthermore, the results illustrate 

that the sensitivity which is normally associated with the heat balance integral method is overcome. 

NOMENCLATURE 

external radius of pipe; 
heat capacity; 
flux removed by coolant; 
conductivity ; 
latent heat of freezing; 
number of sub-divisions; 

radial coordinate ; 
position of the solid-liquid interface; 
time; 
temperature in solid ; 
freezing temperature of liquid ; 
surface temperature of pipe; 
non-dimensional temperature; 
ith isotherm ; 
rla ; 
Rla; 
position of ith isotherm. 

Greek symbols 

a, latent heat parameter = L/c(T, - T,); 

Y;, 
thermal diffusivity ; 
jth coefficient in small time expansion of Z; 

Pijt jth coefficient in small time expansion of Zi; 

P, density; 

r, dimensionless time = Kt/a’. 

INTRODUCTION . 

IN A RECENT paper [l] the author proposed a refine- 
ment of the heat balance integral method suitable for 
the solution of one-dimensional, phase change prob 
lems. The technique described in [l] attempts to 
maintain the flexibility and simplicity of the original 

method [2] and yet provide scope for improved 
precision. The effectiveness of such a refinement was 
illustrated for the classical ‘melting of ice’ problem for 
which there exists an analytic solution. This model 
problem afforded a major simplification to the method 
in that a similarity variable could be introduced and so 
reduce the approximating differential system into a 
simpler, algebraic one. In the present paper the 
performance of the technique, when applied to a 

problem for which no such similarity variable can be 
found, is discussed. 

The problem to be considered is the radial growth of 
a solid phase about a cylindrical pipe, whose surface 
temperature is maintained at a value below the 
freezing temperature of the surrounding liquid. A 
specification of the problem appears in the next 
section. 

There are many suitable numerical techniques al- 
ready available to the engineer. However, as rec- 
ognised by Churchill and Gupta [3], there is still a 
need for simple and efficient approximate methods. In 
fact Churchill and Gupta propose such a method 
which, from independent applications of their pro- 
cedure, provides an estimate of both the incident heat 
flux and the position of the solid-liquid interface. The 
method proposed in [l] supplies all this information 
automatically. Hence, it is the intention of this in- 
vestigation to demonstrate the power of the heat 
balance integral approach when spatial sub-division is 
incorporated. It will be found that for most practical 
purposes the number of sub-divisions required is small. 

Before pursuing the details, it is worth commenting 
briefly on the choice of temperature profile. It is well 
known that the original method described by Good- 
man [2] is sensitive to variations in the shape of the 
approximating temperature profile. Sparrow [4] re- 
ports the inadequacy of polynomial profiles for cy- 
lindrical problems. For such situations logarithmic 
profiles are recommended by Lardner and Pohle [S], 
although the application of anything other than the 
simplest of these is extremely tedious. For the sake of 
simplicity, a piece-wise, linear profile will be. employed 
in the following investigation. The incorporation of 
spatial sub-division overcomes the sensitivity pre- 

viously observed in the heat balance integral method 
and makes judicious profile selection unnecessary. 

PROBLEM SPECIFICATION 

Consider the idealised problem of the solidification 
of a liquid, initially at its freezing temperature To, 
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FIG. 1. Problem specification. 

about a cylindrical pipe of radius a, maintained at a 
constant, lower temperature T, by coolant flowing 
through the pipe. It is assumed that the physical 
properties of the material remain constant throughout 
the process and there is no change of volume on 
solidification. The process may be described as 

, a<r<R(t), t>O; 

T=T,, r=a, t20; 

T= T,, r 2 R(t), t > 0; 

and 

where T is temperature and R is the position of the 
solid-liquid interface. The constants K, K, p and L are 
thermal diffusivity, conductivity, density and latent 
heat of freezing, respectively. It is further assumed that 
the pipe is initially cooled sufficiently rapidly that a 
discontinuous change in the temperature takes place at 
r = a, when t = 0. This provides the initial condition 

R(0) = a 

which completes the specification of the problem. 
It is convenient to non-dimensionalise the above set 

of equations by introducing the variables 

u = (T - TNT, - T,), 

2 = r/a, 

‘5 = Ktfaz, 

and 

Z(r) = R(t)/a. 

The above equations become 

au i a at4 -=-_ z- 

aT ( 1 z az az ’ 
l<z<Z(r), r>o; (1) 

u = 0, z = 1, T 20; (2) 

u= 1, Z>Z(T), r>O; (3) 

dZ 

=az; 
(4) 

and 

Z(0) = 1, (5) 

where a is a dimensionless latent heat parameter 
defined by 

L 
a= 

c(T, - T,)’ 

As indicated in [l] a starting solution is necessary in 
order to implement the heat balance technique. The 
appropriate small time solution is given by Poots [6] 
and the initial motion of the front is of the form 

Z(r)= 1+l”r”2+~1T+~2r3Z+... 

Expressions for the coefficients I.,, 1, and I2 are given 
by Professor Poots although the expression for 1, 
contains a number of typographical errors. 

THE HEAT BALANCE INTEGRAL METHOD 

The technique described in [l] involves the sub- 
division of the temperature range into equal intervals. 
A penetration variable is associated with each iso- 
therm created by the sub-division. Using the heat 
balance integral approach, a system of differential 
equations for the penetration variables is produced. 
Consequently, the solution of the system gives the 
motion of each isotherm, one of which corresponds to 
the solidification front. 

The same technique is adopted here. Consider the 
non-dimensional form of the problem, equations (1) to 
(5), and sub-divide the temperature range into n equal 
intervals so that 

ui = i/n, i = 0, 1, . , n. 

The position of each isotherm ui is denoted by the 
penetration variable Z,(r). where Z,,(T) is the depth of 
solidification and Z,,(r) = 1 for all r. Equation (1) is 
multiplied throughout by z and integrated over each 
sub-region [Z, Zi+ J, i = 0, 1,. . . , n - 1, in turn, 
producing n heat balance equations. The normalised 
temperature u is approximated by the linear profile 

f + (z - zi) 

(6) 
n n(Zi+l - zi) 

in the region [Z, Zi+ r], i = 0, 1, . , n - 1. Replacing 
u by the appropriate profile in each heat balance 
equation and ensuring that expressions representing 
change in flux are approximated by the discontinuous 
change in adjacent profile gradients, the following 
system of equations is obtained: 

(22, + l)i, = 6 - ~ 62, 
z,-1 z,-Z,’ 

(2Zi+ * + Zi)Bi+ * + (2Zi + Zi+ I)ii 

62, 6Zi+t 

=zi+I - zi - zi+2 - zi+l ’ 

i= l,...,n-2, (7) 

and 
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[2( 1 + 3na)Z, + 2,_, Jin 

+ (2” + 2z,_ ,)i,_ 1 = 
6&l- I 

z,-z,_; 

Given the values of Zi for some suitably small value of 
r, the above system (7) can be solved fairly easily using 
a standard Runge-Kutta procedure. 

The starting values are obtained by further con- 
sideration of the solution obtained by Poots [6]. The 
initial motion of each isotherm is assumed to have a 
form similar to that of the solidification front, namely, 

Zi(7) = 1 + pi,tl z + pi,7 + pirr3 ’ + . . . (8) 

Substituting the expansion for Z&t) into Poets’ so- 
lution and expanding in terms of small r produces 
expressions for the coefficients pi? The process is 
extremely laborious and an alternative starting pro- 
cedure is realised in the following discussion, 

NUMERICAL RESULTS 

The system of equations (7), with latent heat param- 
eter a = 1, was solved numerically using a standard 
Runge-Kutta procedure. A suitable size of time step 
was selected by requiring the solution obtained to 
agree to four decimal places with that produced with a 
time step of half the size. The number of subdivisions, 
n, was also varied and the estimates obtained for the 
depth of solidification at two particular stages are 
presented in Table 1. Also included is an estimate 
based on a single profile of the form 

log z/log z, 

as suggested in [S]. For the purposes of a meaningful 
comparison, results obtained by the Isotherm Mi- 
gration Method (see Crank [7]) are quoted. The 
Isotherm Migration Method was applied with a very 
small time step and a slightly modified finite-difference 
approximation at u = 1 in an attempt to produce a 
reliable estimate of the depth of solidi~cation. 

Each method was started from an initial condition, 
obtained from the series expansion discussed in the 
previous section, corresponding to a time T = 0.01. 

The results presented illustrate once again the 
effectiveness of the heat balance integral approach 
when sub-division is incorporated. It is interesting to 
note that the estimates obtained using just two sub- 
regions and linear profiles are comparable with the 
resuits produced from a single logarithmic profile, as 
suggested by Lardner and Pohle. 

The disadvantage of the procedure as presented here 
is that as the number of sub-divisions, n, is increased 
the size of the acceptable time increment, for the early 
stages of computation, decreases rapidly. A time 
increment of 0.0002 was found to be suitable for the 
case n = 4 and was maintained in order to preserve 
consistency of accuracy. For larger values of n it is 
more efficient to use a much simpler differential 
equation solver instead of a Runge-Kutta package. 
However, for the case n = 4 the computing time 
required is not unreasonable. Also, the accuracy 
produced using just four sub-regions is sufficient for 
most practical situations. The motion of the solidifi- 
cation front, predicted by the above procedure, is 
illustrated in Fig. 2. In Fig. 3, the flux, F, emerging from 
the solid is plotted against J(~t)/a. An estimate of the 
flux can easily be obtained from the solution of the 
system of equations (7), since 

by virtue of expression (6). Included in Fig. 3 are 
estimates produced using the technique proposed by 
Churchill and Gupta [3]. The two approximate so- 
lutions are observed to be in close agreement. Unfor- 
tunately, such a comparison cannot be made in Fig. 2 
because, as Churchill and Gupta point out, R(t)cannot 
be obtained by their technique when the whole of the 
liquid phase is at the solidification temperature. 

Finally, it is interesting to examine the small time 

I I I I I I I I I I I I 
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rt/e 

FIG. 2. Depth of solidification. 
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Table 1. Table 2. 

Time 
I+? 

0.05 

0.1 

a= 1. 

Depth of 
Method solidification 

R(t)lu 
~____ 

Equations (7) 

with n = 1 1.2460 
n=2 1.2548 
n=4 1.2610 
n=8 1.2638 

I.M.M. 1.2695 
Lardner and Pohle [5] 1.2526 

Equations (7) 
with n = 1 

n=2 
n=4 
n=8 

I.M.M. 
Lardner and Pohle [5] 

1.3367 
1.3526 
1.3629 
1.3672 
1.3769 
1.3543 

behaviour of the approximating system (7) and com- 
pare it with the known analytic behaviour. If the 
solution of (7) is assumed to have a small time 
expansion of the form given in (8) then estimates of the 
coefficients p,j can be obtained for different values of n. 
The first two coefficients in each expansion were 
calculated for the cases II = 1, 2 and 4. The values 
corresponding to two of the isotherms are presented in 
Table 2. 

It is encouraging to observe that the discrepancy 
between each estimate and the corresponding exact 
value is small. Also, as the number of sub-divisions 
increases the errors decrease, albeit slowly. These 
results suggest the possibility of using the small time 
behaviour of the approximate system to start the 
numerical solution in situations where the exact 
behaviour is either unknown or difficult to determine. 
This is illustrated in the next section where a related 
problem is briefly considered. 

Isotherm : Z!ll z,, 
Estimate of: P!,!U P!,!l &,I1 &I 

n= 1 1.1547 0.3951 
n=2 0.567 1 0.2768 1.1838 0.2866 
n=4 0.5648 0.2506 1.2088 0.2451 

Exact values 0.5635 0.2358 1.2401 0.2040 

THE EkTERNAL CYLINDER PROBLEM 

Suppose in the problem specified earlier, the latent 
heat is taken to be zero (i.e. a = 0). The system of 
equations (7) now represents an approximation to the 
process of conduction in a region external to a 
cylinder. The region is initially at constant tempera- 
ture T, and the surface of the cylindrical pipe is 
maintained at a lower, constant temperature T,. An 
exact solution to this problem is given by Carslaw and 
Jaeger [S] and has been tabulated by Jaeger [9]. This 
solution is presented in Fig. 4. 

The system of equations (7) was solved numerically 
with a = 0 and n = 4. Starting values were obtained by 
the procedure suggested in the previous section. The 
initial behaviour obtained for Z, is somewhat mean- 
ingless since the isotherm T, is theoretically at infinity 
for all time r > 0. However, the results given in Fig. 4 
are impressive at all points except those in the locality 
of Z,. Clearly, the estimate of the temperature at such 
points is significantly influenced by the finite speed of 
penetration that is predicted for Z,, for all r. The larger 
the radii considered the greater is the discrepancy 
observed and this is to be expected in a situation where 
the concept of penetration depth is perhaps inappro- 
propriate. Nevertheless, the results obtained compare 
favourably with the exact solution as tabulated by 
Jaeger. 

- ualng four sub-raglans 

. Ckrchlll and Gupta C31 
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FIG. 3. Rate of removal of heat per unit area by coolant. 
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FIG. 4. External cylinder problem - variation in temperature with time at specified radii. 

CONCLUDING REMARKS 

A refinement of tL heat balance integral method, as 
described by the author in [l], has been successfully 
applied to the problem of the solidification of a liquid 
about a cylindrical pipe. Although a number of 

assumptions have been made in the problem specifi- 
cation, the results obtained are relevant to many 

industrial problems. It has been shown that acceptable 
estimates of both the temperature and the flux can be 
obtained by using a small number of sub-divisions and 
linear profiles. In addition, the approximating 
differential system that arises can be solved by well 
established numerical procedures. It has also been 
observed that the technique can be considered as self- 
starting for situations where small time expansions are 
not available. 
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SOLIDIFICATION DUN LIQUIDE AUTOUR D’UN TUBE CYLINDRIQUE 

RCumi-La distribution de temperature et le flux thermique sont calcults dans le mtcanisme de 
solidification dun liquide autour d’un tube froid et isotherme. On utilise la mithode inttgrale du bilan 
thermique qui introduit une subdivision spatiale. On trouve que des resultats acceptables peuvent itre 
obtenus en utilisant seulement un petit nombre de subdivisions avec un profil tin&tire par morceaux. Les 
rbsultats montrent que la sensibilite qui est normalement associee g la methode intigrale est maitrisee. 
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ERSTARREN EINER FLtjSSIGKEIT AN EINEM ZYLINDRISCHEN ROHR 

Zusammenfassung-Die Temperaturverteilung und die durch ein Kiihlmittel abgefiihrte Warmemenge 
werden fiir den ErstarrungsprozeB einer Fliissigkeit mit Hilfe der Warmebilanzintegral-Methode mit 
raumlicher Unterteilung bestimmt. Befriedigende Ergebnisse erhalt man schon bei einer kleinen Anzahl van 
Raum-Elementen und einem stiickweise linearen Temperaturprofil. 

Ferner zeigen die Ergebnisse, dal3 die Empfindlichkeit, die normalerweise bei der Warmebilanzintegral- 
Methode auftritt, iiberwunden werden konnte. 

3ATBEPflEBAHME XHAKOCTM BOKPYI- HMJIMH~PHcIECKO~ TPY6KM 

AHHoTauwn - Hpoeeneu pacver pacnpenenenaa TeMneparypbt n CK~~~CTH oraona renna rennotiocri- 
TeJIeM Anll npOUeCCa 3aTBepAeBaHHR THAKOCTH BOKpyr XOnORHOfi H3OTepMW,eCKOti Tpy6KU. MCnOflb- 

30BaH BHTerpaAbHbIii MeTOA TeIlnOBOrO 6anauca. BKnWlaloUHii pa36senne o6aeMa Ha nono6nacrn. 
Hai?neHo. 'ITO C tlOMOlUbK) TOnbKO He6onbluoro 'IWCJla pa36HeHHti W KyCOqHOnHHei?HOrO npO&InK 

MO~HO nonywTb npeebuterdbre pe3ynbTaTbI. noKa3aHo TaKxe.STO TaKWM o6pasoM MACHO H36exaTb 

HeyCTOti',HBOCTH,06b19HO CBK3aHHOfi c WCnOnbSOBaHUeM BHTerpanbHoro MeTOna TennoBoro 6ananca. 


